Information-Centric Networking for the Internet-of-Things

George C. Polyzos
Mobile Multimedia Laboratory
Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business
113 62 Athens, Greece

polyzos@aueb.gr, http://mm.aueb.gr/
Tel.: +30 210 8203 650
Outline

- ICN for the IoT: observations and vision
- I-CAN: Information-Centric Access Networks (GR)
- POINT: IP Over ICN - The Better IP? (H2020 project)
 - CoAP over ICN
- MMlab Research & People
- Pub-Sub Internetworking (PSI): overview & unique features
A vision for the IoT

- many consider the IoT as an extended WSN
- need to move one step further!
 - fully exploiting connected things
 - smart things
 - & things with no computational power whatsoever
 - dumb, but potentially ‘dynamic’; indirectly connected
 - their state changes; observed or set by others
 - proxies...
- focus on *information*, not things
 - application independent
 - no silos!
 - information obtained for one app (silo) to be available to another (originally unexpected) app
 - under user/owner control...
ICN for the IoT

- **Opportunity!**
 - Unsettled technologies/architectures
 - Vertical (silo) applications/technologies \(\rightarrow\) interoperability… lacking
 - ICN could enable interoperability
 - play the role of middleware … in cleaner & leaner way

- **Access Control!**

- **Privacy?** Potential for ‘privacy attacks’ so widespread…
 - Privacy: through access control in *rendezvous* architectures
ICN + IoT

Many recent publications... research...

- ACM SIGCOMM ICN 2014

- ICNRG
 - Information-centric Networking: Baseline Scenarios -- “2.8. Internet of Things”
 - Requirements and Challenges for IoT over ICN
 - Proposed Design Choices for IoT over Information Centric Networking

polyzos@aueb.gr
Why ICN for the IoT

- integrate (vertical application) silos into an Internet of Things
- ICN semantics: pub/sub, asynchronous...
- better/easier network resource management
 - multicast, multi-homing, caching
- easier network attachment and “thing” configuration
- easier “QoS” management
 - explicit naming of traffic (information/content)
 @ the (inter-)network layer
IoT Challenge: Naming

- ... as the integration enabler
 - identifiable → potentially accessible
 - compound names?
- a name (+? metada...) should identify
 - the thing’s identity
 - RFID, QRCode, Barcode
 - @ type level
 - individual thing
 - the thing’s owner & context
 - properties...
- related issues
 - information authentication and provenance verifications
 - manageability, revocability
 - group names

polyzos@aueb.gr
ICN-IoT Semantics

- ICN semantics
 - pub/sub, asynchronous, in either order…
 - persistent interests, group communication
 - metadata
 - facilitate service discovery, service composition…

- (IoT) application (protocol) semantics
 - … the same… consider CoAP…
 - easier to implement CoAP, MQTT… over ICN
 - their semantics match better
 - leaner/more efficient protocol stacks
 - multipoint, across domains & apps
 - multicast, anycast, multi-homing
 - caching: allows separation/disconnection of things
Better/more Flexible Resource Utilization
... with an ICN approach

- better/easier network resource management
 - multicast, anycast, multi-homing, caching
- easier network attachment and “thing” configuration
- easier “QoS” management
 - explicit naming of information/content at the (inter-)network layer
- smaller ICN stack (than IP) => simpler implementations
 - energy efficiency, cost (maintenance etc.) reduction
- easier to create in network security mechanisms
 - filtering, application layer firewalls
More IoT Challenges:

- **Contextual Information Lookup**
 - Name, metadata, user context…
 - API hides the complexity of the underlay topology and architecture

- **Information Forwarding**
 - Delay tolerance, mobility
 - Permanent and ephemeral subscriptions

- **Trust**
 - Limited (or no!) computational power
 - Things can be tampered with; software on things not easily updated
 - Transitive trust and trust delegation
 - Eliminate the need for CA?
Motivation: Mobility presents new challenges and opportunities

- Mobiles have multiple wireless interfaces
- Different wireless access technologies have different characteristics

Objectives: investigate

- ICN requirements & features for mobile/wireless access networks
- multi-source, multi-path, multi-interface
- in-network and proactive caching
- privacy support

Nationally funded project – ARISTEIA II

polyzos@aueb.gr
I-CAN Architecture Features

- **Publication proxies**
 - store and advertise content on behalf of content owners
 - content remains available even when owner is offline

- **Subscription proxies**
 - send subscriptions on behalf of actual receivers
 - beneficial if users are mobile and have disconnections
 - can exploit proactive caching

- **Future content & persistent subscriptions**
 - can reduce **signaling overhead** in cellular and contention-based access networks

- **Use case-scenario: D2D (multimedia) content sharing**
 - *(provider controlled)* sharing of content among clients
 - e.g., travelling on a train
 - 1st copy (maybe) obtained over cellular
 - train cache may also participate...
 - content (chunk) naming facilitates operation
 - can be adapted to work with IP (& D2D/P2P) technologies
POINT: IP Over ICN - The Better IP?

- **Project:** Running: 1/1/2015-31/12/2017
- **Partners:**
 - Aalto U (co-ordinator), ELL-i (FI)
 - Intracom Telecom, AUEB (GR)
 - RWTH Aachen (DE)
 - Primetel (CY)
 - CTVC Ltd, Interdigital, U Essex (UK)
- **Trials in Cyprus (@Primetel)**
- **Concept: IP over ICN (PSI) over SDN**
 - Premise: IP apps can do better over ICN
 - Need to define what “better” means
 - Better utilisation in HTTP streaming scenarios
 - Better privacy of personal data and metadata
 - Better management of virtual network paths
 - Better (fairer) content distribution
Focus
- 1 ISP
- User Equipment (UE): no changes (required)
 - i.e. IP
- ICN used internally in the network
- NAP: Network Access Point
- ICN could be exposed to UE
Blackadder +

- Application-facing abstractions
 - HTTP, CoAP,…

- Novel dissemination strategies
 - For access networks

- Integration with SDN
 - ICN over SDN

- Flexibly-grained QoS
 - per abstraction

- Key target protocols/services
 - HTTP
 - CoAP
 - IP

Fine-grain QoS abstraction

LIPSIN | MSBF | POINT Alternative 3

ICN-over-SDN shim layer

SDN

L2 Transport Networks
The **POINT** IoT story

- **IoT / IP**
 - CoAP over ICN
 - CoAP handler at the NAP
 - UE: no changes (required)
 - i.e. **IP**

- **IoT / ICN**
 - native ICN
An IoT reference architecture

- Caching
- Aggregation
- …

CoAP Client

Host #1

FW-Proxy

GW #1

Host #2

Thing #1

GW #2

RD/GW #1

RD/GW #2

RD/GW #3

Network #1

Network #2

Network #3

CoAP Server

polyzos@aueb.gr
A POINT rendition of the IoT reference architecture

- Network #1
 - RD/GW #1
 - NAP
 - Network #1

- Network #2
 - RD/GW #2
 - NAP
 - Network #2

- Network #3
 - RD/GW #3
 - NAP
 - Network #3

- Host #1
 - GW #1
 - NAP

- Host #2
 - GW #2
 - NAP

- Thing #1
 - GW #2
 - NAP
Scenario #1: Coincidental multicast (async requests, coap-observe RFC 7641)
Scenario #2: One-to-Many Requests
(group-communication RFC 7390)

CoAP GET all.networks/Purple

lookup all.networks

A.B.C.D

CoAP GET all.networks/Purple

JOIN A.B.C.D

RD/GW #1 #2 #3

Network #1 #2 #3

Host #1

GW #1

FW-Proxy

polyzos@aueb.gr
Scenario #3: Service Composition

GW #1

CoAP GET AVG/Purple

AVGer

RD/GW #1

RD/GW #2

AVG/Purple

Purple

Purple

polyzos@aueb.gr
CoAP over ICN

- **CoAP ~ ICN**
 - asynchronous communication
 - persistent interests
 - group communication

- **advantages (to CoAP application developers & operators)**
 - applications do not have to deal with IP multicast
 - no modifications to DNS
 - state overhead moved from the (constrained) endpoints to the network
 - for requests to … not yet available resources & “observe” extension
 - the CoAP server receives a single request
 - all other requests are suppressed by the NAPs
 - (~operator): CoAP and CoAP “observe” create opportunities for multicast
 - the network then uses multicast to handle bursts of traffic

- **CoAP over DTLS**
POINT IoT Experimentation

- ‘things’ with Power over Ethernet
- Connected at the edges of the POINT testbed

POINT Testbed (w/ Blackadder)
- Tunneled over the Internet

polyzos@aueb.gr
Observations

• ICN has some common key features across architectures
 - Content distribution has been the initial key motivation for ICN (CCN)
 - Information dissemination and access (on the IoT) might be the real application
• ICN is well positioned to provide for the IoT
 - caching: client-provider (thing) separation, asynchrony, energy efficiency
 - multihoming: access/unify multiple separate networks/applications
 - traffic management: exploiting explicit information naming in the network
 - mobility support: where relevant—many things are mobile
 - security: new models, new attempts, new problems…
 - privacy: through access control in rendezvous architectures

• Outlook
 - Scalability, efficiency, acceptance, deployment …
 - Security and privacy
● **MMlab Faculty**
 - George C. Polyzos, Director
 - Iordanis Koutsopoulos
 - Giannis Marias
 - Vasilios A. Siris
 - Stavros Tountpis
 - George Xylomenos

Other faculty
- Vana Kalogeraki
- George Papaioannou

● **Network Economics & Services**
 - Costas Courcoubetis
 - Antonis Dimakis
 - George Stamoulis

● **Senior Researchers/PostDocs**
 - Nikos Fotiou, PhD
 - Merkourios Karaliopoulos, PhD

● **Ph.D. students**
 - Xenofon Vasilakos
 - Yannis Thomas
 - Charilaos Stais
 - Christos Tsiolopoulos

● **MSc students**

● **Researchers**

● **Undergraduate students**

● **Alumni…**
 - Dinos Katsaros, PhD (@UCL)
 - Pantelis Frangoudis, PhD (INRIA, Renes)
 - Vaggelis Douros, PhD (@Orange)

http://mm.aueb.gr/
Thank you!

Information-Centric Networking for the Internet-of-Things

George C. Polyzos

Mobile Multimedia Laboratory
Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business
113 62 Athens, Greece

http://mm.aueb.gr/
polyzos@aueb.gr
Selected MMlab ICN Publications

Our ICN-related Research Projects

- **PSIRP**: Publish Subscribe Internet Routing Paradigm
 - FP7 ICT STREP, 2008-2010
 - the basis
 - focus on (inter)-networking
- **Pursuit**: Publish Subscribe Internet Technologies
 - FP7 ICT STREP, 2010-2013
 - extending, above & below the Internet layer
 - optical, wireless, mobility, transport…
- **Euro-NF**: Anticipating the Network of the Future—From Theory to Design
 - FP7 ICT Network of Excellence, 2008-2012
 - ASPECTS, GOVPIMIT, E-key-nets
- **EIFFEL**: Evolved Internet Future For European Leadership
 - FP7 ICT SSA, 2008-2010; Think-Tank continued
 - June 2011 TT @ **MIT**: Information-Centric Networking
- **φSAT**: The Role of Satellites in Future Internet Services
 - European Space Agency funded
 - 2011-2013
- **I-CAN**: Information-Centric Future Access Networks
 - NSRF (Greece), 2014-2015
- **POINT**: iP **Over ICN**- the betTer IP
 - H2020 ICT STREP, 2015-2017
- **SatNEx IV**, ESA, 2015-2016
 - Y1 WI 5: ICN over MAC
 - Y2, WI 4: Caching
Publish-Subscribe Internetworking (PSI)
Publish-Subscribe Internetworking (PSI) Key Functions and Components

- publish – subscribe – rendezvous
 - Rendezvous ID: hash of content (/name)
 - asynchronous and multicast
 - restores the imbalance of power sender/receiver(s)
 - + Scope ID: aggregation, policies…
- PSI Basic Functions: RTF
 - Rendezvous: Matches publications with subscriptions and initializes forwarding
 - Topology: Monitors the network and creates information delivery paths
 - Forwarding

PSI Identifiers
PSI Unique Features

- **Fast forwarding**
 - Bloom filter based forwarding (→ forwarding identifiers)
 - simple, stateless, fast forwarding
 - incl. for multicast
 - path (‘source’) routing
 - path as compact Bloom filter carried on packets

- **Centralized – ‘SDN compatible’ approach**
 - (intra-domain) routing/resource allocation
 - topology discovery/management

- **‘recursive’ use of pub/sub …**
 - object level
 - chunk/packet level…
 - pull transport, error control, rcvr flow control
 - = slow & fast rendezvous
 - topology formation: handover = subscribe to network…
Secure Publisher Proxy

- Combines
 - Identity Based Encryption (IBE)
 - Proxy re-encryption
- The content owner encrypts content using a (different) symmetric encryption key
- Each symmetric key is encrypted using
 - IBE with the owner’s identity

- To access encrypted content, the subscriber needs to
 - decrypt the symmetric encryption key
 - by having the proxy re-encrypt the symmetric key and
 - derive $C_{\text{Subscriber}}$ from C_{Owner}